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Understanding the molecular control of cell fates is central to stem cell research. Such insight requires
quantification of molecular and cellular behavior at the single-cell level. Recent advances now permit high-
throughput molecular readouts from single cells as well as continuous, noninvasive observation of cell
behavior over time. Here, we review current state-of-the-art approaches used to query stem cell fate at
the single-cell level, including advances in lineage tracing, time-lapse imaging, and molecular profiling. We
also offer our perspective on the advantages and drawbacks of available approaches, key technical limita-
tions, considerations for data interpretation, and future innovation.
Introduction
A fundamental requirement for all stem cell (SC) studies is the

clear identification of a cell as a bona fide SC. To this end, a cell’s

self-renewal and differentiation potential needs to be assessed

at single-cell resolution. Single-cell approaches with defined

endpoints to read out clonal cell fates have traditionally been

an important method in developmental and SC biology (Becker

et al., 1963). Because explicit markers that allow the prospective

isolation of SCs with highest purity are not yet known, primary

adult mammalian SC populations remain heterogeneous and at

best enriched for SCs. This poses a major challenge toward

the full characterization of these cells, given that impurities of

the starting population in combination with destructive assays

or discontinuous observation of the cells and their progeny can

lead to inconclusive results.

Consequently, even more than 30 years after the determina-

tion of the fates of all cells in the development of the nematode

Caenorhabditis elegans (Sulston et al., 1983), and despite major

advances in more complex model organisms such as zebrafish

(Keller et al., 2008), our knowledge of adult mammalian SCs

and the genealogy of their lineages remains very limited. In

addition, the integration of the molecular status of each

developmental stage, which has recently been achieved in the

nematode (Du et al., 2014), remains a major challenge for adult

mammalian SCs.

A major bottleneck of SC research has been a lack of

technologies to observe single SCs continuously over long

times while noninvasively assessing the molecular status of

single cells. The SC community has had to rely on population

and/or snapshot readouts, which are insufficient to resolve

the heterogeneity of SC populations (Figure 1A), capture

the dynamics of molecules or phenotypes in a given cell

(Figure 1B), or correlate current cellular states with future fates

(Figure 1C). Recent technological improvements now provide

us with tools to perform multiparameter single-cell mea-

surements and single-cell manipulation, and some can even

achieve this by tracking without killing the cells of interest

(Table 1). In recent years, a plethora of molecular labeling tools

for more efficient lineage tracing have also been developed.

Continuous observation and tracking of single SCs and their
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progeny over time, the gold standard in studying SC systems,

is continuously improving (Schroeder, 2011). Finally, ap-

proaches that allow acquisition of snapshot genomic, tran-

scriptomic, and proteomic data from single cells are now

becoming available.

Here, we review the current state of single-cell analysis for

adult mammalian SCs and discuss how single-cell approaches

are applied to answer key questions in SC research. We also

provide examples of emerging fields and future challenges of

single-cell analysis in SC research.

Cell Lineage Tracing
Cell lineage tracing aims to identify all progeny of a single cell in

order to establish its lineage-differentiation and proliferation po-

tential. This approach has been widely applied in developmental

biology (Blanpain and Simons, 2013; Kretzschmar and Watt,

2012) and remains important to define SC properties in adult

mammalian SC systems (Figure 2). As a minimal requirement,

prospective adult SCs need to display longevity (i.e., the cell or

its progeny need to persist throughout a large part of the lifetime

of the organism) and lineage potential, which means that they

can give rise to all cell types of the tissue they (re)generate. Line-

age tracing can be performed by tagging a cell with a transmit-

table label or by continuous observation of the cell and all its

progeny. The repertoire of tools to trace the fate of individual

cells in vitro and in vivo has been updated by retroviral barcode

vectors, multicolor reporter constructs, inducible recombinases,

and the development of continuous live-cell imaging and

tracking approaches.

Lineage Tracing In Vivo

Initial experiments on adult SCs were pioneered in the hemato-

poietic system by the works of Whitlock andWitte (1982), Weiss-

man (Smith et al., 1991), and Mueller-Sieburg (Whitlock et al.,

1987) in response to the groundbreaking discoveries of Till

and McCulloch. They described the existence of hematopoietic

cells in the bone marrow that can give rise to all types of

blood cells and are able to self-renew (Becker et al., 1963). To

show this, Becker et al. injected mouse bone marrow cells

harboring different chromosomal abnormalities into recipient

animals, which allowed them to identify the clonal origin of
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Figure 1. The Necessity of Continuous Single-Cell Analysis
(A) Population heterogeneity: bulk analyses mask the heterogeneity of a cell population. Only single-cell approaches reveal possible population heterogeneity
(e.g., heterogeneous molecule expression, variable cellular behavior).
(B) Dynamics: only continuous observation of single cells reveals the dynamics of cellular properties changing over time.
(C) Cell fates in clonal dynamics: only continuous observation of single-cell fates allows nonambiguous conclusions about cell fate decisions underlying pop-
ulation outputs. Typical input/output analyses of dynamic cell systems produce snapshot data that can be interpreted by different conclusions about underlying
cell fate choices. Here four very different (out of many more possible) conclusions about underlying cell fate choices are shown. Importantly, all four opposing
conclusions are compatible with the observed snapshot data.
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donor-cell-derived spleen colonies containing multiple hemato-

poietic lineages (Figure 2A) (Becker et al., 1963).

Lineage tracing is now an essential tool to study SC properties

in adult mammalian tissues such as skin (Mascré et al., 2012),

hair follicle (Claudinot et al., 2005; Rompolas et al., 2012), intes-

tine (Barker et al., 2007), brain (Beckervordersandforth et al.,

2010; Loulier et al., 2014), muscle (Rinkevich et al., 2012), bone

(Park et al., 2012), and cancer (Youssef et al., 2010).

Single-Cell Transplantation

The gold standard approach to demonstrate SC function is sin-

gle-cell transplantation (Table 2). In the blood system in vivo

adoptive transfer experiments are routinely performed based

on increasingly refined prospective isolation schemes for SC

populations (Osawa et al., 1996; Sieburg et al., 2006; Yamamoto

et al., 2013) (Figure 2B). Recently, Yamamoto et al. established

an in vivo five-lineage tracing strategy to refine the HSC hierar-

chy after single-cell transplantation. They identified long-term

self-renewing lineage-restricted myeloid/erythroid progenitors

and proposed a myeloid-bypass model for the hematopoietic

system (Yamamoto et al., 2013). Other examples for SC systems

that have been studied using single-cell transplantation assays

include muscle SCs (Sacco et al., 2008), hair follicles (Claudinot

et al., 2005) and mammary SCs (Shackleton et al., 2006).

Clonal Tracing by Genetic Labeling

In vivo clonal lineage tracing requires tools to distinguish the

transplanted cell and its progeny from the host. Various ap-

proaches in different cell systems have been developed to this

end and have been reviewed recently in detail elsewhere (Blan-

pain and Simons, 2013). For the blood system congenic markers

of two distinguishable alleles of CD45 (CD45.1 (Ly5.1)/CD45.2
(Ly5.2)) or Thy-1 (CD90.1/CD90.2) are routinely used. Using

transgenic strains expressing a fluorescent protein or the LacZ

gene for transplantation assays can also identify progeny of sin-

gle cells. A novel labeling approach that has been widely applied

is the introduction of genetic barcoding through lentiviral vectors

(Gerrits et al., 2010; Lu et al., 2011; Naik et al., 2013, 2014; Ver-

ovskaya et al., 2013) (Figure 2C). This tool is an extension of clon-

ality measurements based on the identification of unique genetic

rearrangements, point-mutations, or deletions and retroviral

integration site analysis by Southern blotting (Capel et al.,

1990; Jordan and Lemischka, 1990). To perform clonal labeling,

a heterogeneous population of cells is transduced with a lentivi-

ral library coding for unique, ‘‘barcoded’’ DNA sequences. Each

cell should receive a unique barcode, and after adoptive transfer,

its progeny can be tracked by high-throughput sequencing. With

this approach the clonal contribution of young and aged HSCs to

blood generation was compared (Verovskaya et al., 2013). The

result suggests that the individual clonal contribution to blood

generation changes dynamically and that HSC pool sizes differ

between old and young animals. In addition, skeletal distribution

of HSC clones after adoptive transfer differed with age (Verov-

skaya et al., 2014). These results argue against previously

suggested high-turnover rates of the HSC pool in vivo (Wright

et al., 2001). The data further argue in favor of the notion

that distinct hematopoietic niche microenvironments may be

present in different skeletal bones. Another study using a similar

approach demonstrated that hematopoietic reconstitution origi-

nates from a small pool of transplanted SCs in irradiated hosts,

which can generate all cell types of the blood system (Naik

et al., 2013). Paired transplantation of in vitro preamplified
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Table 1. Modalities of Single-Cell Analysis Used in Stem Cell Research

Lineage Tracing Time-Lapse Imaging Molecular Profiling

Approach flow cytometry,

sequencing,

microscopy

microscopy flow cytometry, mass cytometry,

polymerase chain reaction, whole-

genome and transcriptome sequencing,

immunohistochemistry, fluorescence

in situ hybridization

Condition in vivo, in vitro in vivo, in vitro ex vivo

Parameters to be

measured

phenotype of progeny,

proliferation

single-cell fates (in vivo only short-term),

proliferation, phenotype of progeny,

interactions, motility, molecular dynamics

protein, DNA, RNA

Number of markers/

molecules

1–2 1–10 1–genome-wide

Destruction of cell upon

measurement

depends on readout

modality

no yes

Temporal resolution repeated readouts,

endpoint analysis

continuous observation (in vivo <12 hr)

and endpoint analysis

snapshot of single time point

Identification of cellular

heterogeneity

yes yes yes

Full lineage tree no yes no

Molecular dynamics no yes no

Motility no yes no

Interactions no yes no
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progenitors revealed a heritable lineage imprinting at early

stages of HSC differentiation. Of note, a widespread criticism

of adoptive transfer experiments and the ex vivo manipulation

of SC is that such approaches do not recapitulate the steady-

state behavior of SCs (Table 2) (Lu et al., 2011). To address

this problem, a mouse line has been reported in which individual

homeostatic HSCs are labeled with a unique genetic marker

by transient induction of a transposase (Sun et al., 2014). The

study suggests that not few HSCs, but rather a large number

of lineage-committed, yet long-lived progenitors, contribute to

steady-state hematopoiesis.

Recombinase-Based Lineage Tracing

Recombinase-driven genetic recombination has been widely

applied to lineage tracing in many SC systems. To this end, a re-

combinase is expressed under a tissue-specific promoter to

induce a conditional reporter gene. The recombination event

permanently locks the expression of the reporter in the targeted

cell type and its progeny. Two commonly used methods are the

FLP-FRT and the Cre-loxP recombinase systems, of which the

latter is most commonly used in mice. Here, a Cre-recombinase

is expressed under a cell-type-specific or tissue-specific pro-

moter. The Cre-recombinase expressing animals are crossed

with a reporter line that contains a recombinase-inducible

gene. To temporally restrict the activity of Cre-recombinase,

inducible systems have been developed (Kretzschmar and

Watt, 2012).

Cre-inducible reporter systems have been used in mice for

instance to identify Lgr5, a marker for epithelial SCs (Barker

et al., 2007); to foster the identification of prospective markers

of adult neuronal SCs (Beckervordersandforth et al., 2010; Lou-

lier et al., 2014); and to identify HSCs (Gazit et al., 2014).

Recently, variations of the recombinase-based labeling ap-

proaches have been developed to increase cell type specificity
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or the number of labels that can simultaneously be traced (re-

viewed in Kretzschmar and Watt, 2012). An important extension

for single-cell lineage tracing in vivo is the use of multicolor Cre-

inducible reporters. Applications include lineage tracing in the

brain (Livet et al., 2007) and the intestine (Ritsma et al., 2014;

Snippert et al., 2010).

A drawback of clonal fate mapping is that it often does not

permit continuous observation of the steps that lead from the

initial precursor to the differentiated progeny. Therefore it is not

possible to study the proliferative history and molecular pro-

cesses that occur during differentiation. These limitations can

be overcome by continuous time-lapse imaging.

Time-Lapse Imaging
Continuous Live-Cell Imaging in Vitro

Continuous long-term live-cell imaging allows quantitative

observation of single cells and all of their progeny over time

for days to weeks (Okita et al., 2004; Schroeder, 2008, 2011).

The required hardware for in vitro continuous single-cell imag-

ing approaches is comparatively simple and would be in princi-

ple widely available in many cell biological laboratories. For the

most part, video microscopes with a cell incubation unit, auto-

mated stages, and basic epifluorescence optics are sufficient.

However, insufficient commercial software and the reliability

of hardware components (such as automated focusing or me-

chanical shutters) still render most video-microscope setups

useless for the continuous acquisition of sometimes weeks-

long in vitro culture experiments. Data handling (currently on

the order of terabytes), automated image processing, and

software to track and quantify thousands of single cells

across several days are additional challenges that currently

hamper the widespread distribution of this technology. A

detailed overview explaining the technical requirements for



Figure 2. In Vivo Clonal Fate Profiling Approaches
(A) Transplantation of bone marrow cells leads to development of clonal spleen colonies. This experiment first demonstrated the capacity of bone-marrow-
derived cells to generate hematopoietic cells of different lineages (Becker et al., 1963).
(B) Serial single-cell transplantation permits the study of the clonogenic and lineage potential and clonal bias in lineage production of HSCs (Osawa et al., 1996;
Sieburg et al., 2006; Yamamoto et al., 2013).
(C) Molecular barcoding uses viral libraries with unique DNA-barcode sequences to label individual isolated hematopoietic progenitor cells, which permits the
study of clonal dynamics and lineage bias in these cells (Lu et al., 2011; Naik et al., 2013; Verovskaya et al., 2013, 2014).
(D) Tissue-specific reporter expression can be achieved by crossing an inducible fluorescent reporter mouse with a mouse line expressing the inducer (e.g., Cre-
recombinase) under a tissue-specific promoter. Random combinations of multiple fluorescent reporters in different cells can lead to dozens of possible clonal
‘‘colors’’ (Livet et al., 2007).
(E) Single cells isolated from tissues can be grouped by sequencing their transcriptome or genome to reconstruct their clonal relationships (Behjati et al., 2014;
Jaitin et al., 2014; Abyzov et al., 2012; Frumkin et al., 2008; Navin et al., 2011).
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in vitro time-lapse-imaging can be found elsewhere (Coutu and

Schroeder, 2013).

Continuous imaging has proven to be a powerful tool to

confirm the origins of hematopoietic cells from hemogenic

endothelial cells (Eilken et al., 2009). In this study, continuous in-

formation on a cell’s identity was combined with the continuous

monitoring of cell morphology, cell adhesion, and several molec-

ular markers. The results could later be confirmed by short-term

in vivo imaging in developing zebrafish embryos (Bertrand et al.,

2010; Kissa and Herbomel, 2010). Similarly, lineage analysis,

tracking of cell morphology, and cell division frequencies were

instrumental in understanding how key factors regulate neuronal

development in the murine cerebral cortex (Asami et al., 2011;

Costa et al., 2011). The unambiguous identification of each indi-

vidual cell throughout differentiation was also crucial to reveal

the instructive function of cytokines during hematopoietic line-

age choice (Rieger et al., 2009). In this study, continuous cell

fate analysis revealed that cytokines can instruct lineage choice,

and not only support the survival of already lineage-restricted

cells. A recent study applied continuous time-lapse imaging to
identify cell cycle length as a mechanism regulating transcription

factor concentrations (Kueh et al., 2013). Another example of this

application is continuous time-lapse imaging to screen for

normal development in human preimplantation embryos (Kirke-

gaard et al., 2013).

With an increasing set of transgenic reporter mouse strains

and cell lines becoming available (e.g., Faust et al., 2000;

Filipczyk et al., 2013) these tools should be exploited for

functional studies in different SC systems. In addition, in-

culture antibody staining approaches (Eilken et al., 2009,

2011), assays for live-cell RNA imaging (Lionnet et al., 2011;

Ozawa et al., 2007; Strack et al., 2013), or approaches to

monitor protein secretion profiles of single SCs have been

reported (Zhao et al., 2014). Finally, endpoint analysis of intra-

cellular protein (Gomez et al., 2013) or transcript expression

(Lee et al., 2014) can complement continuous single-cell

tracking.

Continuous Live-Cell Imaging in Vivo

Continuous noninvasive long-term observation of stem and pro-

genitor cells and their progeny in their niche with high temporal
Cell Stem Cell 15, November 6, 2014 ª2014 Elsevier Inc. 549



Table 2. Comparison of Single-Cell Approaches Used to Study Adult Mammalian SC Systems

Prospective Cell Sorting

and Transplantation Live-Cell Imaging

Genetic Labeling Using

Recombinase Next-Gen Sequencing

Application in vivo (but including ex vivo

purification step)

in vitro and in vivo in vivo in vivo

Strengths multiparameter flow

cytometry based sorting;

progeny clearly identifiable

(dye, viral labels, barcoding,

allelic markers)

continuous observation

throughout several days

(in vitro only); complete

genealogy; molecular

dynamics

no disruption of in vivo

context (niche)

no disruption of in vivo

context (niche); no labeling

required; genome-wide

information

Weakness ex vivo purification (and

labeling) may affect viability

and development;

invasiveness of transplant;

potentially heterogeneous

populations, if no single-cell

transplant; insufficient

prospective markers; no

genealogy; ‘‘snapshot’’ type

of readout

in vitro culturemay not reflect

in vivo conditions; no

continuous in vivo imaging

for continuous readout of

long-term fate; requires

prospective isolation of

enriched (pure) SC

populations

lack of SC-specific

promoters; often restricted

to a single marker (two

possible); no genealogy

(except multicolor labeling);

requires generation of

transgenic reporter animals;

‘‘snapshot’’ type of readout

no combination of genome

and transcriptome

information (yet); no

dynamics; technical limits

toward number of cells being

probed (to date); ‘‘snapshot’’

type of readout

Examples of tissues

to which methods

were applied

blood, muscle, skin,

mammary gland

blood, neurons, skin,

pancreatic islets, intestinal

crypts, muscle

blood, neurons, skin,

intestinal crypts, bone, any

tissue with a known specific

promoter

blood, cancer
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and spatial resolution would be optimal for understanding SC

biology. Currently, live-cell in vivo imaging and tracking of single

cells is successfully applied in the developmental biology of non-

mammalian embryos. Here, imaging tools for the visualization

from a single cell to a whole multicellular organism have been re-

ported (reviewed in Höckendorf et al., 2012). However, live-cell

imaging with sufficient spatial and temporal resolution of adult

SCs in mammals poses major technical challenges and remains

restricted to extremely few specialized cases. Despite major ad-

vances in noninvasive biomedical imaging modalities such as

MRT, microCT, or fluorescent molecular tomography (Nguyen

et al., 2014), such techniques still lack sufficient spatial resolution

to trace single cells in vivo andmap their fates over time. The only

widespread available live-cell imaging modalities for in vivo cell

tracing thus are multiphoton- and confocal light-microscopy (Pit-

tet and Weissleder, 2011; Schroeder, 2008). These imaging

modalities, however, lack sufficient penetration depth for direct

noninvasive imaging of most adult SC niches. In addition, they

only allow observation of very small areas, requiring immobiliza-

tion and surgical exposure of tissues. This poses a major hurdle

for meaningful in vivo single SC fate mapping approaches

because the maximum tolerable time an animal can be kept alive

under anesthesia on the microscope stage is limited (usually

restricted to 6–12 hr). Especially for SC systems with low SC

frequency, long divisional rates, and heterogeneity such as in

the hematopoietic system, it is impossible to observe sufficient

SC divisions and cell phenotype changes during such short inter-

vals. Moreover, in particular for HSCs, SC niches are poorly

defined, and in contrast to highly organized endothelial tissues,

clear orientation marks to retrace cells during repeated imaging

sessions are mostly absent. Thus, to date, intravital imaging

studies on the hematopoietic system have been restricted to

short-term, mostly immunity-related aspects of hematopoiesis

(Massberg et al., 2007).
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Notwithstanding these technical challenges, intravital con-

focal imaging and multiphoton imaging have been successfully

applied to study several adult SC systems. Skin and hair follicles

are readily accessible for intravital microscopy and allow

extended imaging and tracing over repeated imaging sessions.

In one study, the epithelial SC niche was characterized using

noninvasive labeling with a fluorescent protein in vivo (Tumbar

et al., 2004). In another study, GFP-labeled SCs of the hair follicle

were traced, and the interaction of cells with neighboring

supportive mesenchymal cells was mapped during hair follicle

regeneration (Rompolas et al., 2012). The murine testis repre-

sents another easily accessible tissue. Two studies applied

wide-field fluorescence time-lapse microscopy to track the SC

pool that provides steady-state spermatogenesis in surgically

exposed murine testis. This work revealed the nonhomogenous

composition of the SC pool that supports spermatogenesis and

the continuous replacement of spermatogenic SCs. The intesti-

nal epithelium is constantly regenerated by crypt base columnar

(CBC) SCs that are located around the base of the intestinal crypt

and express Lgr5 (Barker et al., 2007). Whether CBC SCs are

equally capable of contributing to self-renewal and differentia-

tion has been a much-debated question. Using multiphoton

microscopy and an abdominal imaging window, Ritsma et al.

have applied time-lapse imaging to the intestinal crypt in vivo

(Ritsma et al., 2014). Multicolor clonal labeling facilitated tracing

individual SC progeny restricted to Lgr5 expressing-intestinal

SCs. This study demonstrated that within the heterogeneous

population of intestinal SCs, each SC is able to function equally

as a long-term contributor to self-renewal and differentiation.

Single-Cell Molecular Profiling
Until recently, molecular profiling techniques for probing a cell’s

proteome, transcriptome, or genome have not been sensitive

enough to be applied at single-cell resolution. This issue is



Table 3. Single-Cell Molecular Profiling Approaches

FISH qPCR ddPCR DNA-seq RNA-seq

Proteomics and

Flow Cytometry

Continuous Live-

Cell Imaging

Instrumentation fluorescence

microscope

Fluidigm C1,

qPCR reader

Biorad ddPCR

droplet generator

and reader

Illumina, Ion

Torrent

Illumina, Ion

Torrent, SOLiD

flow cytometry,

CyTOF, microfluidic

platforms

fluorescence

microscope (epi/

confocal)

Number of

markers/

molecules

&32 &300 &10 genome-

wide

genome- wide &50 &10

Destructive yes yes yes yes yes yes/ no no

Temporal

resolution

snapshot snapshot snapshot snapshot snapshot snapshot continuous and

snapshot

References (Liu et al.,

2009)

(Lubeck &

Cai, 2012)

(Guo et al.,

2010)

(Moignard

et al., 2013)

(Guo et al.,

2013a)

(Warren et al.,

2006),

(Hou et al.,

2013)

(Navin et al.,

2011)

(Tang et al., 2010)

(Yan et al., 2013)

(Faddah et al.,

2013) (Jaitin et al.,

2014)

(Yamamoto et al.,

2013) (Kemper et al.,

2012) (Ludin et al.,

2012) (Bendall et al.,

2011) (Bendall et al.,

2014).

(Eilken et al., 2009)

(Rieger et al., 2009)

(Kueh et al., 2013)

(Rompolas et al., 2012)

(Tumbar et al., 2004)

(Klein et al., 2010;

Nakagawa et al., 2010)

(Ritsma et al., 2014)
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problematic because bulk assays mask heterogeneity at the sin-

gle-cell level that could have future (fate) consequences for the

cells being observed (Figure 1A). With the help of improved sam-

ple preparation, for instance throughmicrofluidic devices, insen-

sitivity and cost have been significantly reduced, which now

makes it feasible to perform single-cell molecular profiling of

many cells with readouts ranging from dozens of components

to genome-wide coverage (Table 3). However, most molecular

profiling approaches are destructive, thus providing only a

snapshot view of a molecular status of a cell (Figure 1), which

cannot be correlated with future fates of the cells studied. This

caveat is a problem in particular when SC populations can be

only enriched to insufficient purity. In this section we discuss

the current state of single-cell molecular profiling approaches

and refer to examples of SC-relevant applications whenever

possible.

Flow Cytometry

Flow cytometry is the most widely applied single-cell method for

characterization and, in combination with cell sorting, isolating

SCs. Flow cytometry detects cellular parameters such as size,

morphology, cell cycle phase, or DNA content for a large number

of cells. Fluorophore-conjugated antibodies against intracellular

or extracellular markers allow detection of proteins and their acti-

vation status (e.g., phosphorylation). Fluorescence-activated

cell sorting (FACS) further permits selective isolation of intact,

living single cells, which makes this technology crucial for

many clonal applications and downstream assays of single SC

analysis. In the hematopoiesis field flow cytometry has been

instrumental in determining prospective markers of rare HSCs

in the bone marrow (Kemper et al., 2012; Osawa et al., 1996;

Spangrude et al., 1988) and continues to be a key technology

for single-cell studies on SCs (Yamamoto et al., 2013).

The parameters that can be detected by multicolor flow cy-

tometry are ultimately limited by the number of fluorescent

dyes that can be spectrally resolved. To overcome this limitation

next-generation cytometry techniques have been developed.

Image-stream cytometers acquire spatially resolved pictures of
cells passing through the flow cytometry instrument. Adding

spatial information to cytometry can be used to define intracel-

lular localization of proteins or discern morphological features

of a large number of single cells. This approach has been used

to identify a subset of myeloid cells in the bone marrow that

interacts with HSCs and induces their upregulation of COX2 un-

der stress (Ludin et al., 2012). Recently a new generation of flow

cytometers with improved spectral resolution, enabling ‘‘hyper-

spectral cytometry,’’ has been introduced to the market. The

new instruments contain a multiprism monochromator that re-

places the beam splitters and filters of conventional cytometers.

This way signal loss is minimized and detection up to 15 spec-

trally resolved colors with only two lasers becomes possible

(Grégori et al., 2014). Furthermore the introduction of disposable

microfluidic cartridges that replace traditional quartz flow cells

reduces liquid throughput and permits sorting of cells at far lower

pressure than before, which improves cell survival. Improve-

ments in microfluidics sorting approaches and their combination

with high-throughput microscopy and image analysis ap-

proaches will likely compete with and eventually replace the

very costly traditional flow cytometers and sorters that are

currently in use (Mazutis et al., 2013).

Mass Cytometry and High Dimensional Single-Cell

Imaging

Inductively coupled plasma mass spectrometry (‘‘CyTOF’’) en-

ables an even greater amount of components to be studied at

a time from a single cell. To this end, antibodies are labeled

with isotopes of rare-earth elements instead of fluorophores.

State-of-the art technology now claims to simultaneously

resolve >100 individual probes at a time. This technology has

been applied to study the hematopoietic system and the immune

system by dissecting the responses of hematopoietic progenitor

cells toward small-molecule-based perturbation (Bendall et al.,

2011). The study revealed heterogeneity among previously

considered homogenous cell populations but also highlighted

unexpected overlapping signaling responses across distinct

populations of the hematopoietic system. Another study was
Cell Stem Cell 15, November 6, 2014 ª2014 Elsevier Inc. 551
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able to reconstruct a developmental hierarchy of signaling

events during B lymphopoiesis (Bendall et al., 2014).

A further extension of mass cytometry is its application for

reading protein expression signatures from intact tissue sec-

tions. This approach permits one to analyze IHC samples stained

with metal-conjugated antibodies in a rasterized fashion directly

in a mass cytometer. In contrast to flow cytometry, which re-

quires samples in suspension, the spatial integrity of the tissue

sections can be maintained and images reminiscent of micro-

scope images of tissue sections are reconstructed (Angelo

et al., 2014; Giesen et al., 2014). In line with this technique,

another compound approach termed array tomography relies

on the serial acquisition of high-resolution fluorescent micro-

scopy and backscatter-electron microscopy images of ultrathin

tissue sections. Subsequently images are computationally re-

constructed using data of both modalities (Micheva and Smith,

2007).

Multiparameter imaging technologies will be of importance in

the SC field, for instance to dissect SC niches such as the

bone marrow niche of HSCs where current immunofluorescent

imaging approaches reach the technical limits of resolvable

fluorophore combinations. Despite their great potential, the

technologies however remain far from routine application. This

paucity is mainly due to the current lack of commercially avail-

able software for data analysis, commercially available rare-

earth-labeled antibodies, and high hardware costs.

Single-Cell Proteomics

Single-cell proteome studies are currently challenging due to

the lack of sufficiently sensitive instrumentation for proteome-

wide readouts in single cells. As readouts, the aforementioned

fluorescence and mass cytometry tools represent the most

powerful options (Bendall et al., 2012). This superiority is

because by far the highest degree of multiplexing for multipro-

tein expression profiling in single cells can be achieved today

by the use of protein-specific antibody probes. Other highly

sensitive and versatile techniques that can be applied to single

cells are proximity ligation assays (PLAs). Antibody-DNA conju-

gates are used to bind target molecules and are amplified using

a rolling-circle polymerase chain reaction (PCR) (Weibrecht

et al., 2010). By using two independently binding antibody-

DNA conjugates targeted against the same protein, PLA

ensures high specificity and potentially single-molecule resolu-

tion. Furthermore microfluidic-based proteome chips have

been reported, permitting quantitative yet still low-scale multi-

plexed detection of proteins (Willison and Klug, 2013). A draw-

back when using antibody probes is their variable specificity.

To improve detection even with nonspecific antibodies at

hand a single-cell western blotting method has been developed

that first separates the protein content of single cells by its mo-

lecular weight in a miniaturized type of a polyacrylamide gel

prior to antibody-based detection. This approach was reported

to resolve up to 11 proteins in 1,000 independently assayed

single cells on a single microscope slide (Hughes et al.,

2014). Finally one study generated protein fusions with a fluo-

rescent protein to screen the expression dynamics of 93 genes

in the nematode C. elegans (Liu et al., 2009). However, tagging

approaches may affect protein function and the implementation

of this approach for a large number of genes in other SC sys-

tems remains technically challenging.
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PCR

PCR is a sensitive method to amplify genomic DNA and to quan-

tify mRNA and microRNA transcripts after reverse transcription.

The power of PCR for genomic single-cell analysis was recog-

nized early and was pioneered in the SC field, e.g., for haplotype

analysis of human sperm (Li et al., 1988) and the subcloning and

detection of transcripts in single hematopoietic progenitors

(Brady et al., 1990). Quantitative reverse transcription PCR

(RT-qPCR) can be used to measure mRNA levels. Integration

of RT-qPCR into microfluidic chips and single droplet assays

now facilitates multiplexed and quantitative applications at the

single-cell level. Commonly, after reverse transcription, a pream-

plification step using multiplexed primers targeted against the

genes of interest is performed. In this way the cDNA obtained

from a single cell can be used to quantify the expression of up

to 100 transcripts (White et al., 2011). Alternatively, digital PCR

(ddPCR) provides an absolute count of a transcript of interest

(Guo et al., 2012). The cDNA product of a single-cell reverse tran-

scription reaction is split into very high numbers of little compart-

ments (‘‘droplets’’), such that each contain either one or no cDNA

molecule of interest. The number of compartments with PCR

product then equals the number of individual transcripts of the

given gene.

A limitation of PCR is the low number of genes that can be

studied at a time. This restriction makes this approach biased

with respect to the choice of candidate genes. Despite this

limitation, targeted single-cell screens have been shown to

be instrumental in revealing heterogeneity in SC populations.

For instance, cell lineages of the murine embryo could be re-

constructed based on gene expression signatures of key

developmental transcription factors (Guo et al., 2010). Another

study used a targeted single-cell transcriptional profiling

approach probing 77 genes for their association with Nanog

downregulation in embryonic SCs (ESCs). The single-cell

expression signatures confirmed upregulation of differentiation

and cell-cycle-associated genes in response to Nanog loss

(MacArthur et al., 2012). A similar strategy was used to study

gene expression networks in hematopoietic stem and progen-

itor cells (Moignard et al., 2013). Quantification of 18 lineage-

specifying transcription factors revealed a new regulatory

relationship among three master regulators of hematopoietic

cell fate. The signatures also allowed progenitor populations

to be distinguished by selectively expressed sets of key tran-

scription factors. In another study, an expression panel of

280 cell surface markers was used to reveal heterogeneity

among the progenitor populations of the hematopoietic sys-

tem (Guo et al., 2013a). The study found distinct subsets

among purified hematopoietic precursors and it was possible

to computationally reconstruct a map of the cellular hierarchy

underlying hematopoiesis.

ddPCR has been used to quantify the abundance of PU.1, a

major regulator in hematopoiesis, in individual hematopoietic

stem and progenitor populations (Warren et al., 2006). ddPCR

has also been used to provide an absolute count of genetic

diversity within a given population of cells. In a study on hu-

man-fibroblast-derived induced pluripotent SCs (iPSCs), it was

demonstrated that somatic cells in an adult human individually

harbor a significant amount of acquired somatic copy number

variations. This finding proves the notion that somatic cells are
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not identical, but instead display a significant degree of mosai-

cism (Abyzov et al., 2012).

Single-Cell Sequencing

Single-cell genomic and transcriptomic sequencing are powerful

new technologies with great potential in the SC field. The ability

to reach single-cell sensitivity has relied upon the development

of protocols that provide sufficient amplification with minimal

amplification bias in order to reach whole-genome coverage.

Several protocols have been developed to this end for single-

cell-derived DNA and RNA sequencing. In-depth reviews on

the technical details and differences among these approaches

have been recently published (Junker and van Oudenaarden,

2014; Shapiro et al., 2013).

Single-Cell Genome Sequencing

Seemingly identical cells in an adult organismmay acquire differ-

ences in their genomes due to dynamic changes in their DNA.

Single-cell genome sequencing can be used to resolve such dif-

ferences. By using a DNA amplification method that ensured a

high genome coverage (MALBAC), it was possible to detect

copy number variations and single-nucleotide polymorphism

(SNP) among the genomes of three individual cells (Zong et al.,

2012). Another aspect of single-cell genomics is the potential

to detect genome rearrangements, for instance occurring during

mitosis. To this end two studies usedwhole-genome sequencing

to analyze the genomes of human sperm at single-cell resolution

(Lu et al., 2012;Wang et al., 2012). By comparing the genome se-

quences obtained from single sperm with the donor’s genetic

codes, both studies were able to establish de novo mutation

rates and determine chromosomal recombination frequencies.

Lu et al. further reported that autosomal aneuploidy correlated

with an overall lower incidence of crossovers in sperm. In a

similar study, sequencing of both polar bodies of human oocytes

was used to derive information about aneuploidy or SNPs in dis-

ease-associated alleles, while retaining the oocyte otherwise

intact (Hou et al., 2013). Single-cell genome sequencing can

also be used to derive structural information about the nuclear

architecture. Nagano et al. used single-cell genome sequencing

to obtain a chromosomal contact map of crosslinked DNA. The

crosslinking patterns were used to reconstruct chromosomal

territories within the nucleus (Nagano et al., 2013). Finally, Guo

et al. have performed methylome analysis at the single-cell level.

They applied this approach to detect CpG islands within the

genome of single mouse ESCs (mESCs), haploid sperm cells,

and mouse zygote pronuclei (Guo et al., 2013b).

Single-Cell Transcriptome Sequencing

Similar to single-cell genome sequencing, single-cell RNA

sequencing (RNA-seq) provides a highly resolved picture of the

transcriptome of a single cell. This data can be of particular inter-

est in cell populations of differentiating cells where transitions

from one cell type to another likely are reflected by the underlying

changes in transcription. Tang et al. used single-cell sequencing

to determine the transcriptional changes, including the changes

in transcript variants, negative regulators of transcription such as

microRNAs, and epigenetic regulators during the derivation of

ESCs from the inner cell mass (Tang et al., 2010). RNA-seq

can also be applied to reveal differences among seemingly iden-

tical cell populations and draw conclusions on their genomic

regulation. In a study that compared the response of a popula-

tion of bone-marrow-derived dendritic cells (BMDCs) toward a
challenge with lipopolysaccharides (LPS), the observed hetero-

geneous response at single-cell transcriptome level could be

attributed to differences in maturation stages of the cells in the

in vitro culture system (Shalek et al., 2013). Pairwise compari-

sons yielded clusters of genes that share similar function. In a

follow-up study, more than 1,700 single cells were exposed in

a highly combinatorial microfluidic approach to a set of condi-

tions mimicking a pathogen infection (Shalek et al., 2014). Cells

were kept either in isolation or in coculture for paracrine

signaling. Interestingly, cell-to-cell variability in a primary inflam-

matory gene-module decreased in cells that were not permitted

to exchange paracrine signals. Another study aimed to use RNA-

seq to determine the incidence of monoallelic expression of tran-

scripts in single cells. This phenomenon has been thought to be

restricted to a few cells during early embryonic development and

to be transmitted to adult cells. Deng et al. used RNA-seq to

study allelic expression patterns of mouse preimplantation em-

bryos (Deng et al., 2014). Monoallelic expression of autosomal

genes was reported in 12%–24% of transcripts in both embry-

onic and differentiated cells. In departure from the concept

that monoallelic expression is an inherited trait established dur-

ing embryonic development, the study suggests that monoallelic

expression can appear in a random fashion in embryonic and

adult cells. The fact that expression from heterozygous alleles

occurs in a variable fashion will be important to explain suscep-

tibility to genetic disorders. A variation of single-cell RNA-seq

that relies on mRNA capture by photoactivation was used to

capture mRNAs from selected single cells in complex tissues

such as the brain in situ (Lovatt et al., 2014).

Single-Cell RNA FISH

Single-cell RNA fluorescence in situ hybridization (FISH) allows

the absolute quantification of mRNA transcripts in single cells

by specific hybridization of fluorescently labeled probes to target

RNAmolecules (Junker and vanOudenaarden, 2014). Single-cell

RNA FISH and single-cell qPCR was used in combination in a

candidate approach to enable the study of the variability of

gene expression during the reprogramming process of iPSCs

(Buganim et al., 2012). Since single-cell RNA FISH allows one

to determine absolute molecular counts of mRNA, this approach

can also serve to validate whole-transcriptome sequencing data

(Liu et al., 2009). In combination with super resolution micro-

scopy and the combinatorial use of fluorophores to label mRNAs

in a spatially definedmanner, the detection of up to 32mRNAs at

a time in a single cell has been reported (Lubeck and Cai, 2012).

Next Steps and Future Challenges for Single SC Studies
An increasing number of single-cell technologies now allow us to

address longstanding biological problems and challenge exist-

ing paradigms in SC biology. Nevertheless, technical limitations

still exist that need to be overcome in order to make full use of

single-cell approaches in SC biology. Below we highlight several

of those areas that we believe will be of future importance to the

SC field.

Single Sequencing for Lineage Tracing

An exciting aspect of single-cell sequencing is that it has a

large potential to be exploited for single-cell lineage tracing

in an entirely label-free manner. Until recently, the number

of cells that can be processed within reasonable time and

cost has limited such approaches. Microfluidic technology for
Cell Stem Cell 15, November 6, 2014 ª2014 Elsevier Inc. 553
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high-throughput sample preparation, decreasing sequencing

costs, and the establishment of precise technologies for accu-

rate molecule counting in sequencing data now make such

approaches feasible. Several studies have already made use of

single-cell whole-genome sequencing for unbiased clonal cell

tracing (Figure 2E). In a study on human breast cancer, single-

cell genome sequencing has been used to detect copy number

variations in individual cells and to identify clonal populations

of tumor cells that correspond to different waves of tumor expan-

sion (Navin et al., 2011). More recently a similar approach was

applied in clonal cell lines derived from nonmalignant murine tis-

sues (Behjati et al., 2014). The sequences obtained from these

lines were analyzed with respect to their number and quality of

mutations, which could be correlated with the divisional history

and type of tissue the cells were derived from. Furthermore,

the approach allowed the estimation of the contribution of em-

bryonic precursors to adult tissue cells. Also, single-cell exome

sequencing can serve as a basis for delineation of clonal relation-

ships (Xu et al., 2012) or the dissection of complex tissues into

distinct cell types. In a proof-of-principle study of a population

of splenocytes enriched for the dendritic cell (DC) marker

CD11c, more than 4,000 single cells were analyzed in this

manner (Jaitin et al., 2014). A critical component of this study

was a newly developed sequencing protocol (MARS-Seq) that

ensured accurate molecule counting of the single-cell tran-

scripts. Four groups of gene modules that correlate with known

expression signatures of different subtypes of cells in the im-

mune system could be clustered. When CD11c-enriched cells

were isolated after an LPS challenge of the animals, a different

composition of the DC subpopulations could be observed.

Notably, the authors report a large variability with respect to

the expressed genes. Such variability may be indicative of the

existence of previously not known, differentially responding

subsets of a given cell type.

Monitoring of Cell-Extrinsic and Cell-Intrinsic Cues

Signaling events triggered by extrinsic cues such as growth fac-

tors, cytokines, or signals from the microenvironment influence

the outcome of cell differentiation (Endele et al., 2014; Rieger

et al., 2009). Receptors for different stimuli, although supporting

different cell fates, frequently activate several identical signaling

pathways. The cellular response of a given cell stimulated with a

particular extrinsic signal is determined by the integration of the

crosstalk of several synchronously or sequentially activated

signaling pathways and their dynamics and strength. Moreover,

even in seemingly homogenous cell populations, single cells can

respond heterogeneously to a particular external stimulus, which

can be linked to different future cellular behavior (Figure 1A) (Tay

et al., 2010). Consequently, methods are required that allow the

detection and quantification of the temporal dynamics of

signaling pathway activities with single-cell resolution in live

cells. Additionally, since initial signaling events and eventual

cell fate decisions can be temporarily separated by days, detec-

tion of signaling needs to be combined with methods that allow

tracking future fates of single cells. The latter can be achieved by

long-term time-lapse imaging, as discussed above, or by single

live-cell isolation and subculture after observing signaling re-

sponses. To this end manipulation, for instance by microfluidic

platforms that allow one to individually address, select, and

isolate single cells of interest, will be required.
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A variety of biosensors based on fluorescence that allow the

detection and quantification of signaling dynamics or intermedi-

ate signaling components (e.g., second messengers) in live

cells has been described. Subcellular translocation events of

signaling components are a recurring feature of many activated

signal transduction pathways. Fusion of the protein (full length) or

the protein domain responsible for translocation to a fluorescent

protein visualizes these events and can therefore be used to

detect pathway activity. Using a p65-GFP fusion protein, this

technique has, for example, been exploited to study the dy-

namics of NFkB signaling in single cells (Tay et al., 2010). Other

fluorescent biosensors for signaling activity are based on Förster

resonance energy transfer (FRET). FRET-capable donor and

acceptor fluorophores can either be tagged to separate proteins

(intermolecular FRET) or exist within one polypeptide (intramo-

lecular FRET). In the latter, the modification of the sensor by a

signaling pathway of interest results in conformational change

of the sensor and in FRET. Because this is a reversible process,

signaling dynamics can be measured over time. FRET-based

sensors have been developed for a variety of different pathways,

as reviewed elsewhere (Newman et al., 2011).

Studying signaling events also requires their precise spatial

and temporal manipulation. New tools for signaling perturbation,

such as light-inducible systems (Toettcher et al., 2011), in com-

bination with sensors for signaling activity will allow important

new insight into how specific signaling components and their

temporal coordination are involved in orchestrating SC decisions

(Figure 1B). For an in-depth review of the topic the reader is

referred to Purvis and Lahav (2013).

Improving In Vitro Observation, Culture, and

Manipulation of Single SCs

To date, long-term continuous observation of SCs and their

progeny is limited by the lack of suitable out-of-the-box time-

lapse microscopes including required incubation and manipula-

tion devices and software. Currently, scientists still have to build

their own instrumentation because commercial suppliers of

microscopes continue to fail to provide adequate compound

solutions.

Advances in microfluidic, microdroplet, and hanging-drop

technologies point the way toward an entirely different, ‘‘pro-

grammable’’ approach of in vitro culture systems that will permit

parallel readouts for thousands of single cells in one experiment

(Frey et al., 2014; Gómez-Sjöberg et al., 2007). For instance,

spatial confinement of individual cells in arrayed compartments

makes it feasible to assess direct functional outcomes of intra-

cellular signaling and to assay the dynamics of their interactions

(Tay et al., 2010), secretion profiles (Zhao et al., 2014), and their

clonal fate (Lecault et al., 2011). Furthermore, intracellular

signaling processes can be studied at single-cell resolution by

avoiding paracrine effects of neighboring cells, as is the case

in bulk cultures. Rare cell populations can be profiled at a prote-

omic level through microfluidic antibody capture (Willison and

Klug, 2013) and combining microfluidics with optical tweezing

enables isolation of preselected single cells from culture systems

in order to do quantitative single-cell readouts or further clonal

analysis (Landry et al., 2013).

Such approacheswill be particularly important tomake full use

of human patient-derived iPSC models. Chemical compound

screens, or large-scale genetic alterations through short hairpin



Cell Stem Cell

Review
RNAs (shRNAs) or Clustered Regularly Interspaced Short Palin-

dromic Repeats (CRISPR) (Holt et al., 2010) in functional

screens, will require massive miniaturization and parallelization

of cell culture approaches (de Souza, 2014). At the same time,

efforts are ongoing to create artificial niches with the aim to pro-

vide cues that foster SC maintenance or the directed differentia-

tion into select tissues (Lutolf et al., 2009; Torisawa et al., 2014).

Biological Uncertainty and Computational Solutions

A critical disconnect exists between the now available single-cell

molecular profiling tools and in vivo or in vitro continuous fate

mapping approaches. With the exception of continuous time-

lapse imaging, single-cell molecular profiling studies to date

require destruction of the cell being investigated. This require-

ment renders it impossible to correlate the consequences of a

given molecular constitution with the future fate of the cell. On

the other hand, continuous, noninvasive observation or in vivo

fate mapping approaches only permit a few molecular markers

to be analyzed at a time. Additionally, snapshot analysis of single

cells at transcriptome-wide levels bears the risk of overestimat-

ing cellular heterogeneity. RNA expression, for instance, occurs

in bursts, thus even cells with identical gene expression will

display the same set of mRNA at different levels at a given

time point. Over time, however, a given cell will average these

effects, as seen in bulk population based analysis. It will be

key to study, at the single-cell level, whether such fluctuations

of gene expression over time indeed induce alternate cell fate

choices in SCs, as has been previously suggested (Enver

et al., 1998), and how these fluctuations potentially modulate

responses to cell-extrinsic instructive cues received by a

cell. However, given the current destructive approaches to

measuring gene expression, future solutions are yet to be found

to dissect such effects in intact cells and relate them to clonal cell

fates. A solution to this problem might be the use of continuous

in vitro observation of single cells and their progeny in order to

empirically build a deterministic model of cell states at any

time during the observation. Reoccurring patterns can then be

used to identify and computationally predict future cellular

behavior (Cohen et al., 2010). Single cells could then be isolated

at key time points, for instance briefly before or after a predicted

cell division, to reveal the underlying molecular constitution at

critical time points. With such tools at hand, future efforts should

focus on combining multiple types of single-cell whole-genome,

transcriptome, and proteome readouts.

Clinical Application of Single SC Analyses

Single-cell approaches with functional readouts of SCs in vitro

and in vivo have been proven to be important for regenerative

and reproductive medicine (Nguyen et al., 2014). However,

most of the approaches to monitor, for instance, transplanted

SCs in humans do not yet permit single-cell resolution. One

of the first routine applications of single-cell analysis is in repro-

ductive medicine. Next-generation sequencing approaches are

used in preimplantation diagnostics and quality control for

in vitro fertilization (Wells, 2014). The technology is used in

screenings for preimplantation genetic diagnosis (PGD) of aneu-

ploidy to select chromosomally normal embryos. In addition, it

holds the promise to identify traits that lead to improved preg-

nancy rates, reduced miscarriage, or reduced chromosomal de-

fects (Wells, 2014). Another technology used in preimplantation

diagnostics is time-lapse microscopy, which permits continuous
and noninvasive monitoring of the germinal stage during the first

days after in vitro fertilization. A study correlated time-lapse im-

aging data of human embryos with gene expression analysis and

provided evidence that characteristic behaviors of the embryo

during the first cell divisions toward the three- and four-cell stage

reflect underlying molecular processes of embryonic develop-

ment (reviewed in Kirkegaard et al., 2013). Continuous observa-

tion of human preimplantation embryos in clinical time-lapse

incubators now permits identification of embryos with normal

behavior to predict further success of implantation and develop-

ment (Kirkegaard et al., 2013). With increasing appreciation of

clonal heterogeneity in cancer, such approaches could be also

used to dissect distinct cancer (stem) cell lineages in leukemia

or solid tumors. These analyses will enable improved targeted

therapy and may ultimately help to identify traits that lead to tu-

mor relapse or tumor immune evasion and develop strategies to

address these problems therapeutically.

Summary
New molecular readouts and functional screening tools are

constantly being developed for single-cell analyses. The new

methods are beginning to complement traditional experimental

strategies and have already been used to answer several long-

standing questions of SC biology. As often is the case with novel

technologies, it is important to bear in mind technical limitations,

unexpected effects, and an overinterpretation of results (Ger-

main, 2014). While (continuous) single-cell quantification will

ultimately be required for a complete understanding of many

processes, it will not always be required or be the most informa-

tive approach for a given question. Eventually, the integration of

quantitative single-cell analysis with computational prediction

and high-throughput in vitro and in vivo approacheswill allow de-

ciphering fates of SC systems and ultimately the ontogeny of all

tissues.
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Schüffler, P.J., Grolimund, D., Buhmann, J.M., Brandt, S., et al. (2014). Highly
multiplexed imaging of tumor tissues with subcellular resolution by mass
cytometry. Nat. Methods 11, 417–422.

Gomez, D., Shankman, L.S., Nguyen, A.T., and Owens, G.K. (2013). Detection
of histone modifications at specific gene loci in single cells in histological
sections. Nat. Methods 10, 171–177.
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